Fractional aspects of the Erdös-Faber-Lovász Conjecture

نویسندگان

  • John Bosica
  • Claude Tardif
چکیده

The Erdős-Faber-Lovász conjecture is the statement that every graph that is the union of n cliques of size n intersecting pairwise in at most one vertex has chromatic number n. Kahn and Seymour proved a fractional version of this conjecture, where the chromatic number is replaced by the fractional chromatic number. In this note we investigate similar fractional relaxations of the Erdős-Faber-Lovász conjecture, involving variations of the fractional chromatic number. We exhibit some relaxations that can be proved in the spirit of the Kahn-Seymour result, and others that are equivalent to the original conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A clone-theoretic formulation of the Erdös-Faber-Lovász conjecture

The Erdős–Faber–Lovász conjecture states that if a graph G is the union of n cliques of size n no two of which share more than one vertex, then χ(G) = n. We provide a formulation of this conjecture in terms of maximal partial clones of partial operations on a set.

متن کامل

On the Linear Intersection Number of Graphs

The celebrated Erdös, Faber and Lovász Conjecture may be stated as follows: Any linear hypergraph on v points has chromatic index at most v. We will introduce the linear intersection number of a graph, and use this number to give an alternative formulation of the Erdös, Faber, Lovász conjecture. Finally, first results about the linear intersection number will be proved. For example, the definit...

متن کامل

On the Erdös-Gyárfás conjecture in claw-free graphs

The Erdős-Gyárfás conjecture states that every graph with minimum degree at least three has a cycle whose length is a power of 2. Since this conjecture has proven to be far from reach, Hobbs asked if the Erdős-Gyárfás conjecture holds in claw-free graphs. In this paper, we obtain some results on this question, in particular for cubic claw-free graphs.

متن کامل

Lovász-Schrijver SDP-operator and a superclass of near-perfect graphs

We study the Lovász-Schrijver SDP-operator applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the SDP-operator generates the stable set polytope in one step has been open since 1990. In an earlier publication, we named these graphs N+-perfect. In the current contribution, we propose a conjecture on combinatorial...

متن کامل

On a conjecture of Erdös, Graham and Spencer, II

It is conjectured by Erdős, Graham and Spencer that if 1 ≤ a1 ≤ a2 ≤ · · · ≤ as are integers with ∑s i=1 1/ai < n − 1/30, then this sum can be decomposed into n parts so that all partial sums are ≤ 1. This is not true for ∑s i=1 1/ai = n − 1/30 as shown by a1 = · · · = an−2 = 1, an−1 = 2, an = an+1 = 3, an+2 = · · · = an+5 = 5. In 1997 Sandor proved that Erdős–Graham–Spencer conjecture is true ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2015